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We investigate instabilities that arise when the free surface of a liquid covered with
an insoluble surfactant is vertically vibrated and inertial effects are negligible. In the
absence of surfactants, the inertialess Newtonian system is found to be stable, in
contrast to the case where inertia is present. Linear stability analysis and Floquet
theory are applied to calculate the critical vibration amplitude needed to excite the
instability and the corresponding wavenumber. A previously reported long-wavelength
instability is found to persist to finite wavelengths, and the connection between the
long-wavelength and finite-wavelength theories is explored in detail. The instability
mechanism is also probed and requires the Marangoni flows to be sufficiently strong
and in the appropriate phase with respect to the gravity modulation. For viscoelastic
liquids, we find that instability can arise even in the absence of surfactants and
inertia. Mathieu equations describing this are derived and these show that elasticity
introduces an effective inertia into the system.

1. Introduction
The effect of surfactants on interfacial hydrodynamics has long been a topic of study

due to its importance in nature and industry. Yet in spite of numerous investigations,
novel and fascinating phenomena continue to be uncovered even in relatively simple
flows. One of the most remarkable observations is that surfactants can destabilize a
flow that would be completely stable (to small-amplitude disturbances) in the absence
of surfactants. In particular, it was recently discovered that surfactants can destabilize
the inertialess flow of two adjacent fluids in a channel, a system for which no instability
exists when surfactants are absent (Frenkel & Halpern 2002; Halpern & Frenkel
2003; Blyth & Pozrikidis 2004; Wei 2007). Surfactants can also induce instabilities in
liquid droplets that spread on an underlying liquid layer (Troian, Wu & Safran 1989;
Warner, Craster & Matar 2004; Edmonstone, Craster & Matar 2006). The purpose
of this contribution is to discuss another example of an otherwise stable system that
is destabilized by surfactants: the free surface of an inertialess vertically vibrated
liquid.

It is well known that in the presence of inertia, a vertically vibrated liquid free
surface can become unstable, giving rise to Faraday waves (Faraday 1831; Benjamin &
Ursell 1954; Kumar 1996)). The effects of insoluble surfactants on this instability
have recently been accounted for through linear stability analysis (Kumar & Matar
2004a, b; Giavedoni & Ubal 2007) and numerical simulations (Ubal, Giavedoni &
Saita 2005a, b, c). In addition to these studies, which analyse the full Navier–Stokes
equations, a model based on the lubrication approximation has been developed and
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investigated (Kumar & Matar 2002; Matar, Kumar & Craster 2004). In this model,
which is strictly valid for long-wavelength disturbances, inertia was absent and it
was found that instability could not occur in the absence of surfactants. However,
once surfactants are present, instability can occur thanks to the Marangoni flows
engendered by surfactant concentration gradients.

Although the effects of surfactants on the Faraday instability have been previously
examined, several outstanding questions remain. First, does the inertialess instability
reported in Kumar & Matar (2002) persist for finite-wavelength disturbances? Studies
of Faraday waves of finite wavelengths have generally focused on cases where inertial
effects are significant; the inertialess case appears to have been overlooked. Second,
how well does the long-wavelength theory work compared to the finite-wavelength the-
ory? Connections between the two theories were not attempted in prior work (Kumar
& Matar 2002; Matar et al. 2004). Third, what is the mechanism for the surfactant-
induced destabilization? This has been probed to some extent in Matar et al. (2004),
but only in the long-wavelength limit and for a limited range of parameters. The
above questions will be addressed in the present work. In addition, we investigate the
effect of liquid viscoelasticity and find that it can cause a vertically vibrated liquid
free surface to become unstable even in the absence of surfactants and inertia.

The governing equations are presented in § 2, the inertialess Newtonian limit is
examined in detail in § 3, and Floquet theory is applied in § 4. Results and discussions
for Newtonian and viscoelastic liquids are given in § 5 and § 6, respectively, with
conclusions following in § 7.

2. Governing equations
We consider an incompressible liquid on top of a horizontal plate of infinite length

and width. The plate is vertically vibrated in a sinusoidal fashion with an acceleration
of amplitude a and frequency ω. The reference frame is fixed to the plate, which
is in the (x, y)-plane and located at z = − h. No-slip and no-penetration boundary
conditions apply at the plate, and in the reference frame adopted the base state is
quiescent.

The free surface of the undisturbed liquid is covered with a monolayer of an
insoluble surfactant and located at z =0. The surfactant diffusion coefficient is denoted
by D, σ0 is the surface tension when surfactant is absent, and σm is the surface tension
at the mean surfactant concentration. The surfactant concentration is assumed to
obey a linear equation of state. The liquid is characterized by a density ρ, Newtonian
solvent viscosity ηs , non-Newtonian contribution to the zero-shear viscosity ηp , and
characteristic relaxation time λ.

As the derivation of the linearized governing equations has been presented elsewhere
(Kumar 1999; Kumar & Matar 2004a, b; Suman 2008), we simply show the final result.
The equations are given in non-dimensional form, where length is scaled with h, time
with 1/ω, velocity with hω, pressure with ηsω, and surfactant concentration with Γm,
the mean surfactant concentration. The linearized governing equations are:

(Re∂t − (∂zz − k2))(∂zz − k2)w − η

De

∫ t

−∞
F (t − t ′)(∂zz − k2)2wdt ′ = 0, (2.1)

(Re∂t − (∂zz − 3k2))∂zw|z = 0 − η

De

∫ t

−∞
F (t − t ′)(∂zz − 3k2)∂zw|z =0 dt′

+ k2B̃(t)ζ + Ck4ζ = 0, (2.2)
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∂tΓ − ∂zw|z =0 +
k2

Pe
Γ = 0, (2.3)

∂tζ = w|z = 0, (2.4)

(∂zz + k2)w|z =0 +
η

De

∫ t

−∞
F (t − t ′)(∂zz + k2)w|z =0 dt ′ + Mk2Γ = 0, (2.5)

w|z = −1 = 0, ∂zw|z = −1 = 0, (2.6)

where k is the magnitude of the wavevector in the (x, y)-plane, F is a relaxation
modulus, ζ is the height of the perturbed free surface, w is the z-component of
the liquid velocity, and Γ is the surfactant concentration. Note that here ζ = ζ (t),
w = w(z, t), and Γ = Γ (t) since these now represent the amplitudes of the normal
modes. The dimensionless parameters that appear in the above equations include
a Reynolds number, Re ≡ ρh2ω/ηs , viscosity ratio, η ≡ ηp/ηs , Deborah number,
De ≡ λω, inverse capillary number, C ≡ σm/ηsωh, Péclet number, Pe ≡ h2ω/D,
and Marangoni number, M ≡ (σo − σm)/ηsωh. In addition, B̃(t) = B − Ã cos(t) with
B ≡ ρgh/ηsω and Ã ≡ ρah/ηsω, where g is the mean acceleration due to gravity.

3. Inertialess Newtonian limit
We now consider the case in which inertial and viscoelastic effects are absent, i.e.

Re =0 and η = 0, in order to connect our analysis with that of Kumar & Matar
(2002), who analysed long-wavelength disturbances on vertically vibrated thin liquid
films. Equation (2.1) simplifies to:

(∂zz − k2)2w = 0, (3.1)

which can be solved to yield:

w(z, t) = (P + Qz) cosh(kz) + (R + Sz) sinh(kz), (3.2)

where P, Q, R, and S are functions of t but not z. Equation (2.6) can be used to
obtain Q and R in terms of P and S:

Q =
sinh2(k)S − kP

sinh(k) cosh(k) − k
, R =

cosh2(k)P − kS

sinh(k) cosh(k) − k
. (3.3)

Similarly, equation (2.5) gives:

S =
−MkΓ

2
− kP, (3.4)

while equation (2.4) gives:

P = ζt . (3.5)

Application of equation (2.2) produces:

2kR + (B̃(t) + Ck2)ζ = 0, (3.6)

which can be combined with (3.3) to (3.5) to obtain a first-order ordinary differential
equation (ODE) for ζ :

2k

(
cosh2(k) + k2

sinh(k) cosh(k) − k

)
ζt + (B̃(t) + Ck2)ζ +

(
k3

sinh(k) cosh(k) − k

)
MΓ = 0. (3.7)
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A corresponding equation for Γ can be obtained by combining (2.3) with (3.2) to
(3.5):

Γt − k3

sinh(k) cosh(k) − k
ζt +

[(
sinh2(k) − k2

sinh(k) cosh(k) − k

)
Mk

2
+

k2

Pe

]
Γ = 0. (3.8)

Equations (3.7) and (3.8) are a coupled system of first-order ODEs describing the
free-surface height and surfactant concentration perturbation. If the left-hand sides of
these equations are Taylor expanded around k = 0 and only the leading-order terms
retained, one recovers equations equivalent to those in Kumar & Matar (2002), which
were derived by direct application of the lubrication approximation to the governing
equations. Equations (3.7) and (3.8) thus generalize the results of Kumar & Matar
(2002) for arbitrary wavelengths. These equations may exhibit instability, and this will
be probed in the next section through application of Floquet theory. Before doing so,
we consider several other limits.

When surfactant effects are absent, i.e. Γ = 0 or M = 0, equation (3.7) reduces to:

2k

(
cosh2(k) + k2

sinh(k) cosh(k) − k

)
ζt + (B̃(t) + Ck2)ζ = 0, (3.9)

which can be solved to yield:

ζ (t) = ζ (0) exp

[(
cosh(k) sinh(k) − k

2k
(
cosh2(k) + k

)
)(

−(B + Ck2)t − Ã sin(ωt)

ω

)]
. (3.10)

Equation (3.10) reveals that ζ → 0 as t → ∞ no matter how large Ã is. Thus, the free
surface of a vertically vibrated Newtonian liquid is stable if inertia and surfactants
are absent. The same conclusion was drawn by Kumar & Matar (2002) for the case
of long-wavelength disturbances.

In the opposite limit, M → ∞, one finds that Γ = 0 as M → ∞, meaning that
this case is stable too. Returning to equation (2.5), one also sees here that Γ = 0 as
M → ∞, and using this result in equation (2.3) implies that ∂zw|z = 0 = 0. If we consider
just the (x, z)-plane, the continuity equation then requires that ∂xu|z = 0 = 0, where u

is the dimensionless horizontal velocity component. This result implies that the free
surface neither contracts nor expands, and that it is a no-slip surface (u|z = 0 = 0).
However, the surface can still deform in the vertical direction. This is a so-called
inextensible surface, which was considered by Lamb in modelling the calming effect
of oil on water waves (Lamb 1932). One can also consider a limit in which M → ∞
but Γ M = O(1), but it is readily shown that this leads to a first-order ODE in ζ

which is stable.
For the case of an infinite-depth surfactant-covered liquid, modified forms of

equations (3.7) and (3.8) can be obtained by replacing (2.6) with:

w|z = −∞ = 0, ∂zw|z = −∞ = 0. (3.11)

In this case, the length scale
√

σo/ρg has been used for non-dimensionalization. From
equation (2.1), we obtain:

w(z, t) = (P + Qz) exp (kz), (3.12)

where P and Q are functions of t but not z. The modified boundary conditions give:

P = ζt , (3.13)
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Q =
−MkΓ

2
− kζt . (3.14)

Equation (3.6) then yields:

2kζt + (B̃(t) + Ck2)ζ = 0, (3.15)

while equation (2.3) gives:

Γt +

(
Mk

2
+

k2

Pe

)
Γ =0. (3.16)

Note that equations (3.15) and (3.16) are decoupled as the normal stress balance
along with the no-slip and kinematic boundary conditions yields equation (3.15), and
the surfactant transport equation along with the no-penetration boundary condition
and shear stress balance gives (3.16). Indeed, if one considers the limit of infinite
liquid depth, it can be shown that the last term of (3.7) and the second term of (3.8)
become zero, reducing those equations to (3.15) and (3.16).

The latter two equations can be solved to give:

ζ (t) = ζ (0) exp

[(
1

2k

) (
−(B + Ck2)t − Ã sin(ωt)

ω

)]
, (3.17)

Γ (t) = Γ (0) exp

[
−

(
Mk

2
+

k2

Pe

)
t

]
, (3.18)

which indicate that as t → ∞, ζ → 0 and Γ → 0. Thus, the vertically vibrated free
surface of a Newtonian liquid of infinite depth is stable in the absence of inertia
even if surfactants are present. It is noteworthy that in this limit, two of the natural
length scales in the problem, h (the liquid depth) and

√
ν/ω (the viscous penetration

depth), are infinite. In the presence of inertia, the latter length scale is finite and
instability can occur in the absence of surfactants even for an infinite-depth liquid.
When viscous effects are weak, the surface height is well-described by a damped
Mathieu equation (Kumar & Tuckerman 1994). (Even when viscous effects are not
weak and inertia is present, a Mathieu equation can be derived for the surface height
under some conditions (Cerda & Tirapegui 1998; Cerda, Rojas & Tirapegui 2000).)
In the absence of inertia, instability appears to require the former length scale to be
finite and the presence of surfactants. The dynamics of the surfactant couple with
those of the surface height to yield a second-order ODE for ζ , as can be seen by
differentiating equation (3.7) and substituting (3.8). The potential of this coupled
system to exhibit instability is discussed next.

4. Floquet theory
Since the forcing in the problem is time-periodic, Floquet theory can be applied to

analyse the linear stability problem presented by equations (2.1) to (2.6). We again
consider the inertialess limit (Re = 0) but allow for viscoelastic effects (η �= 0). We
first express ζ (t), w(z, t), and Γ (t) as time-periodic functions:

ζ (t) = exp ((s + iα) t)

∞∑
−∞

ζn exp(int), (4.1)

w(z, t) = exp ((s + iα) t)

∞∑
−∞

wn(z) exp(int), (4.2)
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Γ (t) = exp ((s + iα) t)

∞∑
−∞

Γn exp(int), (4.3)

where s is a real-valued growth rate. The value of α determines the temporal nature
of the surface response; α = 0 corresponds to a harmonic response whereas α = 1/2
corresponds to a subharmonic response. Consistent with prior studies (Kumar 1999;
Kumar & Matar 2004a, b), only these two values of α are considered.

Substituting equation (4.2) into (2.1), we obtain:

(∂zz − k2)2wn(z) = 0, (4.4)

and wn(z) can be expressed as:

wn(z) = (Pn + Qnz) cosh(kz) + (Rn + Snz) sinh(kz), (4.5)

where Pn, Qn, Rn, and Sn are constants. From equations (2.6) and (4.5), Qn and Rn

are found to be:

Qn =
sinh2(k)Sn − kPn

sinh(k) cosh(k) − k
, Rn =

cosh2(k)Pn − kSn

sinh(k) cosh(k) − k
, (4.6)

while equations (2.5), (4.3), and (4.5) give Sn as:

Sn =
−MkΓn

2νn

− kPn, (4.7)

where νn = 1+(η/De)
∫ ∞

0
F (τ )e−(s+i(α+n))τ dτ with τ = t − t ′. Equations (2.4), (4.1), and

(4.5) can be used to find Pn:

Pn = (s + i (α + n)) ζn. (4.8)

With the help of (4.5), equation (2.2) becomes:

2kνnRn + (B̃(t) + Ck2)ζ = 0. (4.9)

Substituting the expression for Rn, we obtain the following relationship:

Anζn + BnΓn =
Ã

2
(ζn+1 + ζn−1) , (4.10)

where

An = B + Ck2 + 2kνn

(
cosh2(k) + k2

cosh(k) sinh(k) − k

)
(s + i(α + n)) , (4.11)

Bn =
k3M

cosh(k) sinh(k) − k
. (4.12)

If equations (4.1) to (4.8) are combined with (2.3), another relationship results:

Γn = γnζn, (4.13)

where

γn =
k3(s + i(α + n))

(cosh(k) sinh(k) − k) (s + i(α + n) + k2/P e) + (sinh2(k) − k2)kM/ (2νn)
. (4.14)

Equations (4.10) to (4.14) form a recursion relation for the Fourier modes of the free-
surface height and surfactant concentration perturbation. Kumar & Matar (2004a, b)
developed a recursion relation for non-zero Re. In the limit that Re → 0, application
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of L’Hôpital’s rule shows that their expressions reduce to equations (4.10) to (4.14).
A similar argument holds in the infinite-depth case, where their recursion relation
(when converted back to the time domain) becomes equivalent to equations (3.15)
and (3.16) as Re → 0.

The expression for An + γnBn can be rearranged to obtain:

An + γnBn = B + Ck2

+ 3 (s + i(α + n))

[
C1C2 +

C1M

(s + i(α + n)) + k2/P e + C3Mk/(2νn)

]
, (4.15)

where

C1 =
k6

3(cosh(k) sinh(k) − k)2
, (4.16)

C2 =
2νn(cosh2(k) + k)(cosh(k) sinh(k) − k)

k5
, (4.17)

C3 =
sinh2(k) − k2

cosh(k) sinh(k) − k
. (4.18)

Taking νn =1 (Newtonian liquid), Taylor expanding C1, C2, and C3 around k = 0, and
considering only leading-order terms gives C1 ≈ 3/4, C2 ≈ 4/(3k2), and C3 ≈ k/2.
Here k is a small dimensionless wavenumber. This implies:

An + γnBn = B + Ck2 + 3 (s + i(α + n))

[
1

k2
+

3M

4 (s + i(α + n)) + k2/P e + Mk2

]
. (4.19)

This expression is equivalent to the corresponding expression in Kumar & Matar
(2002) (called An therein) obtained via application of the lubrication approximation
to the governing equations.

In the Newtonian case, equations (4.10) to (4.14) have a relatively compact form
when converted to the time domain:

2k

(
cosh2(k) + k2

cosh(k) sinh(k) − k

)
ζtt +

[
B̃(t) + Ck2 +

k6M

(cosh(k) sinh(k) − k)2

+

(
cosh2(k) + k2

cosh(k) sinh(k) − k

)
×

(
k2

Pe
+

(sinh2(k) − k2)kM

2(cosh(k) sinh(k) − k)

)]
ζt

+

[(
k2

Pe
+

(sinh2(k) − k2)kM

2(cosh(k) sinh(k) − k)

)
(B̃(t) + Ck2) + B̃t (t)

]
ζ =0, (4.20)

(sinh(k) cosh(k) − k) Γt +

[
(sinh2(k) − k2)

Mk

2
+ (sinh(k) cosh(k) − k)

k2

Pe

]
Γ = k3ζt ,

(4.21)

where Bt (t) is the time derivative of B(t). These equations are derived assuming that
the liquid is of finite depth and that M �= 0. They can also be directly obtained
from equations (3.7) and (3.8). It is seen that the free-surface height obeys a Mathieu
equation, and that it acts as a forcing term in the equation governing the surfactant
concentration perturbation. The Marangoni, Péclet and inverse capillary numbers
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appear in both the damping and restoring terms in the Mathieu equation, as does the
gravity modulation, giving rise to a time-dependent damping.

The recursion relation given by equations (4.10) to (4.14) can be truncated at a
finite value of n (n= 20 is more than sufficient for the calculations reported herein)
to form a matrix eigenvalue problem which can then be solved using standard
numerical methods (Kumar & Tuckerman 1994). Setting s = 0 yields information
about neutral stability, allowing one to obtain the critical vibration amplitude needed
for instability, Ãc, and the corresponding wavenumber, kc, as functions of the other
problem parameters.

5. Results and discussion: Newtonian case
Figure 1 shows Ãc and kc for the Newtonian case (η = 0) as a function of M

at various values of Re. Also shown are results from the creeping-flow theory and
long-wavelength approximation at the lowest value of Re. We note that all results for
non-zero Re are calculated using the recursion relations valid for arbitrary Reynolds
number (equations (37) to (47) of Kumar & Matar 2004a, b) and the technique
described in § 4. Results from the long-wavelength theory are obtained by using
equation (4.19) in place of (4.15). Further details about the neutral stability curves
used to generate figure 1 can be found in Suman (2008). We now discuss the results
displayed in figure 1.

When Re is relatively large, Ãc increases as M increases, reaches a maximum, and
then slowly decreases to a constant value at large M (figure 1a). In contrast, kc

initially decreases, reaches a minimum, and then increases to a constant value at large
M (figure 1b) (Kumar & Matar 2004a, b). In this case, the response of the surface
waves at instability onset is subharmonic.

The presence of a maximum in the critical amplitude reflects the behaviour
of the damping coefficient for unforced surface waves. As discussed by Lucassen
(1968) and Lucassen-Reynders & Lucassen (1969), liquid surfaces covered by an
insoluble surfactant can support the propagation of two types of waves, transverse
and longitudinal. In the absence of surfactants, small-amplitude surface waves are
transverse in character. The addition of surfactant imparts an elasticity to the surface
that allows the propagation of another type of wave, one which is longitudinal
in character. Lucassen observed that the damping coefficient exhibits a maximum
with respect to surface elasticity when, at a given frequency, the wavenumbers of
the transverse and longitudinal waves coincide. He ascribed the existence of the
maximum to a resonance between the two surface waves, where the resonance acts
to increase the velocity gradients near the surface and thus the viscous dissipation.
Experiments indicate that the damping coefficient does indeed show a maximum with
respect to surface elasticity, and that the wavenumber of the surface waves shows a
minimum near the surface elasticity where the damping coefficient maximum occurs
(Lucassen & Hansen 1966; Lucassen-Reynders & Lucassen 1969). If the surfactant is
soluble and its diffusivity is sufficiently large, the maximum in the damping coefficient
will disappear (Lucassen & Hansen 1967; Decent 1997). For insoluble surfactants,
increasing the surface diffusivity causes the maximum in Ãc to disappear (Kumar &
Matar 2004a, b). Further references concerning the behaviour of unforced surface
waves can be found in Henderson (1998).

As Re decreases, Ãc increases due to the higher level of viscous dissipation, and the
response at instability onset switches to harmonic except at relatively small values of
M (M < ∼1). The maximum in the Ãc versus M curve shifts closer to the M =0 axis,
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Ãc

B

Ãc
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Figure 1. Critical amplitude, Ãc/B , and wavenumber, kc , versus M for (a), (b) ηs =
0.05 g cm−1 s−1, Re = 18.85; (c), (d) ηs = 0.4 g cm−1 s−1, Re = 2.356, (e), (f) ηs =1g cm−1 s−1,
Re = 0.9425. Other dimensional parameters are ρ = 1 g cm−3, σm = 30 dyn cm−1, g = 981 cm
s−2, D = 10−4 cm2 s−1, h = 0.5 mm, and ω/2π = 60 Hz; σo is varied to produce changes in M .
The values of B range from 0.13 to 2.6, the values of C from 1.6 to 32, and Pe = 9.4 × 104.

and the curve develops a minimum at finite M (figure 1c). As shown in the inset,
Ãc still reaches a constant value at large M (corresponding to a no-slip surface). In
addition, the minimum in the curve for kc disappears and is replaced by a maximum,
with kc decreasing beyond that point (figure 1d). At sufficiently large M , kc jumps to
a new value (see inset) because of the existence of a bicritical point in the neutral
stability curves; beyond this point, kc and Ãc asymptote to constant values and the
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system response remains harmonic. The maximum in the curves for Ãc and kc near
M = 0 occurs at the point where the system response shifts from subharmonic to
harmonic.

At even lower Re, the maxima in Ãc and kc occur at M = 0 (figures 1e and 1f ).
The creeping-flow theory yields predictions of the same order of magnitude as the
finite-Re theory. (The agreement between the two calculations improves as Re is
decreased even further.) The long-wavelength approximation agrees well with the
creeping-flow theory at larger values of M , with increasing deviations as M becomes
smaller since kc increases as M decreases. Note that in the creeping-flow theory and
long-wavelength approximation, the system is predicted to be stable for M = 0 and
M → ∞, so Ãc might be expected to exhibit a minimum at finite M . In contrast,
instability can occur in the finite-Re theory even when M = 0 or M → ∞. We note that
as M becomes sufficiently large, Ãc and kc for the finite-Re theory approach constant
values; the behaviour is similar to that shown in the inset of figures 1(c) and 1(d)
so we do not show insets for this case. In both the long-wavelength approximation
and the creeping-flow theory, Ãc and kc continue to increase as M increases since no
instability can occur in these cases as M → ∞.

In order to gain insight into the instability mechanism in the creeping-flow limit,
we can write equation (3.7) as:

k

(
cosh2(k) + k2

sinh(k) cosh(k) − k

)
(ζ 2)t
ζ 2

= − (B + Ck2) + Ã cos(t) −
(

k3

sinh(k) cosh(k) − k

)
M

Γ

ζ
.

(5.1)

A similar strategy was employed by Matar et al. (2004) to study long-wavelength
disturbances. Without loss of generality, we consider values of k for which the term
in parentheses on the left-hand side of equation (5.1) is positive. It is then clearly
seen from the first term on the right-hand side that the mean gravity and surface
tension play stabilizing roles. The second term on the right-hand side indicates that
the gravity modulation will be stabilizing over one-half of the oscillation cycle and
destabilizing over the other half. The third term, corresponding to Marangoni effects,
can be either stabilizing or destabilizing depending on the values of ζ and Γ .

Figure 2 shows the temporal behaviour of each of the terms in equation (5.1) for
several different cases. These plots are obtained by numerically solving equations
(3.7) and (3.8). We first consider figure 2(b), which corresponds to a neutrally stable
situation. It is seen that the Marangoni term is predominantly positive over an oscil-
lation period, indicating that Marangoni effects tend to be destabilizing on average.
Note that for part of an oscillation period, both the gravity modulation and
Marangoni terms are positive. During this time, the gravitational acceleration will tend
to enhance growth of interfacial disturbances, akin to a Rayleigh–Taylor instability
(Kumar 2000). Furthermore, the numerical solution of equations (3.7) and (3.8) shows
that during this time, the surfactant concentration is depleted at wave crests and
enhanced at wave troughs. This then leads to a Marangoni flow that drives liquid
from the troughs to the crests, thereby reinforcing their growth. Over another part of
the oscillation period, both the gravity modulation and Marangoni terms are negative,
meaning that Marangoni flows will promote gravitational levelling. However, since
the Marangoni term is predominantly positive, this stabilizing effect is weak relative
to the destabilizing effect noted earlier. There will also be times when the signs of both
terms are opposite to each other. Again, since the Marangoni term is predominantly
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Figure 2. Temporal behaviour of various terms in equation (5.1): (ζ 2)t /ζ
2 (solid line), mean

gravity and surface tension term (dotted line), gravity modulation term (dashed-dotted line),
Marangoni term (dashed line). We have taken B = 0.13, C =1.6, Pe = 9.4 × 104, and (a) M = 1,
Ã = 5; (b) M =1, Ã = 11.1; (c) M = 1, Ã = 14.5; (d) M = 50, Ã = 14.5.

positive, it will oppose gravitational levelling more than it hinders the Rayleigh–
Taylor-type instability.

Figure 2(a) shows results for a lower value of Ã than figure 2(b), and figure 2(c)
shows results at a higher value, with all other parameters the same. These correspond
to stable and unstable situations, respectively. Careful inspection shows that both
the maximum and minimum values of the Marangoni term increase in magnitude
as Ã increases, but the maximum value increases more, tending to make the system
more unstable. We note that the results in figure 2(c) may only reflect approximate
behaviour since nonlinear effects may become important once the system is unstable.
Figure 2(d) shows results at a higher value of M than figure 2(c) and corresponds to
a stable situation. Although the amplitude of the Marangoni term is larger than in
figure 2(c), it is negative for a longer portion of an oscillation period. In addition, the
time during which both the Marangoni and gravity modulation terms are positive
is smaller. It should also be noted that in some cases a stable system can be made
unstable by increasing M , as can be inferred from figure 1(e). These results suggest
that in order for instability to occur, the Marangoni term needs to be sufficiently large
and positive during an oscillation period, and the time during which the Marangoni
and gravity modulation terms are both positive must be sufficiently long.

Finally, we summarize the effects of varying the other problem parameters in
the creeping-flow limit. As noted earlier, the mean gravity and surface tension play
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stabilizing roles, so increases in B or C lead to increases in Ãc. Increasing B also
produces an increase in kc, whereas increasing C produces a decrease in kc. Decreasing
Pe implies that surfactant diffusion becomes stronger, and as a consequence both Ãc

and kc increase. Since Marangoni forces become weaker as Pe decreases, all of the
features in figure 1 (at any Re) tend to be flattened out, with Ãc and kc becoming
independent of M (Kumar & Matar 2004a; Giavedoni & Ubal 2007). Reducing Pe
also decreases the magnitude of the Marangoni term in equation (5.1). Indeed, in the
limit of vanishing Pe, it is straightforward to show that the system is always stable in
the absence of inertia since Marangoni effects vanish in this limit.

The results of this section further clarify the mechanisms that can give rise to
Faraday waves. When Re is relatively large, the instability mechanism is essentially
inertial (i.e. the instability will occur even when M = 0 or M → ∞), although
surfactants can have a significant effect on Ãc and kc. This is the situation depicted
in figures 1(a) and 1(b). When Re is relatively small, the instability mechanism at
finite M primarily involves Marangoni effects, as shown by the good agreement
between the creeping flow and finite-Re results in figures 1(e) and 1(f). Recall that
in the creeping-flow limit, instability cannot occur unless Marangoni effects are
present (which requires 0 <M < ∞); the precise nature of the instability mechanism
in this limit was discussed with reference to figure 2. If M = 0 or M → ∞, then
the instability mechanism at low but non-zero Re will be inertial. For intermediate
Reynolds numbers, both mechanisms play a role, as can be seen in figures 1(c) and
1(d), whose features are intermediate to those of figures 1(a, b) and 1(e, f ).

6. Results and discussion: viscoelastic case
To investigate the effects of liquid viscoelasticity, we consider one of the simplest

forms of the relaxation modulus, the single-mode Maxwell model (Bird, Armstrong &
Hassager 1987; Larson 1988):

F (τ ) = e−τ/De, (6.1)

for which νn becomes:

νn =1 +
η

1 + De [s + i(α + n)]
. (6.2)

Note that a Newtonian liquid is recovered in the limits De � 1 and De � 1. The
most interesting behaviour occurs when De ∼ 1, where the inertialess viscoelastic
system can be unstable even when the corresponding Newtonian case is not.

We first consider the case of an infinite-depth liquid, for which the boundary
conditions (3.11) hold. Carrying through the Floquet analysis of § 4 yields the following
recursion relation:

(B + Ck2 + 2kνn [s + i(α + n)])ζn =
Ã

2
(ζn+1 + ζn−1) , (6.3)

which is decoupled from the surfactant-transport equation as in the Newtonian case.
Although the surfactant concentration perturbation decays as before, the free surface
can become unstable. Indeed, converting equation (6.3) back to the time domain
yields:

2kDeζtt + [De(B̃(t) + Ck2) + 2k(1 + η)]ζt + (B̃(t) + Ck2 + DeB̃t (t))ζ = 0. (6.4)

This is a Mathieu equation for the free-surface height in which the elasticity introduces
an effective inertia. Although the system itself has no inertia, inertia-like effects can
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arise since the liquid has a ‘memory’ of its prior deformations. Note that the inertial
term is proportional to the Deborah number and is absent in the corresponding
Newtonian case (cf. equation (3.15)). Furthermore, De, η, and C appear in the
damping term, as does the gravity modulation, producing a time-dependent damping.
In contrast, when true inertial effects are present, the Mathieu equation for a weakly
damped Newtonian liquid of infinite depth has a constant damping proportional to
the viscosity (Kumar & Tuckerman 1994).

For a finite-depth liquid in which surfactant effects are absent, one can obtain a
recursion relation of the form (4.10) with Bn =0 and:

An = B + Ck2

+ 2k

(
cosh2(k) + k2

cosh(k) sinh(k) − k

)(
1 +

η

1 + De [s + i(α + n)]

)
[s + i(α + n)] . (6.5)

Converting back to the time domain yields the following Mathieu equation:

2k

(
cosh2(k) + k2

cosh(k) sinh(k) − k

)
Deζtt

+

[
De(B̃(t) + Ck2) + 2k

(
cosh2(k) + k2

cosh(k) sinh(k) − k

)
(1 + η)

]
ζt

+ (B̃(t) + Ck2 + DeB̃t (t))ζ = 0, (6.6)

which is qualitatively similar to equation (6.4).
It is also possible to obtain a Mathieu equation for the finite-depth case in the limit

M → ∞ (no-slip or inextensible free surface). Here, An is the same as equation (6.5),
but for γnBn we have

γnBn =
2k5(s + i(α + s))

(cosh(k) sinh(k) − k) (sinh2(k) − k2)

(
1 +

η

1 + De [s + i(α + n)]

)
. (6.7)

The corresponding equation in the time domain is:

2k

(
cosh2(k) + k2

cosh(k) sinh(k) − k
+

k4

(cosh(k) sinh(k) − k)(sinh2(k) − k2)

)
Deζtt

+

[
De(B̃(t) + Ck2) +

2(1 + η)k5

(cosh(k) sinh(k) − k)(sinh2(k) − k2)

+

(
2k

(
cosh2(k) + k2

cosh(k) sinh(k) − k

)
(1 + η)

)]
ζt + (B̃(t) + Ck2 + DeB̃t (t))ζ = 0

(6.8)

Equations (6.4), (6.6), and (6.8) are derived for η �= 0 and finite De. Compared to (6.6),
equation (6.8) has additional contributions in the inertial and damping terms. Note
that the three inertialess cases considered above are all stable for Newtonian liquids,
but could be unstable for viscoelastic liquids, a possibility that was overlooked in
prior work.

For viscoelastic liquids of finite depth where surfactant effects are present, obtaining
equations in the time domain is cumbersome, so we instead use equations (4.10) to
(4.14) along with equation (6.2) to calculate the critical amplitude and wavenumber.
Figure 3 shows how Ãc and kc depend on M , De, and η. At low M , Ãc increases with
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Figure 3. Critical amplitude, Ãc/B , and wavenumber, kc , versus M for ρ = 1 g cm−3,
σo = 70 dyn/cm, σm =30 dyn/cm, g = 981 cm s−2, D = 10−4 cm2/s, h = 0.5 mm, ηs = 0.2 g/
(cm s), and ω/2π = 60 Hz: (a) and (b) De = 1; (c) and (d) η = 1. In all panels, B = 0.65,
C =8, and Pe = 94250.

a decrease in η. This can be understood by recognizing that when M =0, the system
is stable if viscoelastic effects are absent (η = 0; cf. § 3). Since kc → ∞ as M → 0 when
η = 0 (figure 1f), larger values of kc occur as η decreases.

At higher M , Ãc increases with an increase in η. This can be understood by
recognizing that the system can be unstable even in the Newtonian case, and that
increasing η increases the level of viscous dissipation in the system. This dissipation
will increase as η increases and is consistent with larger values of kc. We note that at
higher M , kc decreases as M increases, similar to the Newtonian case. At low M , kc

increases as M increases for the non-zero values of η, evidently due to the presence
of the elasticity-induced instability that operates in this regime.

Figure 3 shows that increasing De at higher M leads to a decrease in Ãc and
kc. This is due to a lowering of the effective viscosity in the system (cf. equation
(6.2)). Although it is not evident from the plot, Ãc, and as a result kc, is a non-
monotonic function of De at low M , becoming very large as De → ∞ and De → 0.
This feature might be expected by noting that when surfactant effects are absent
(M =0), instability cannot occur unless viscoelastic effects are present, and that the
liquid behaves as Newtonian when De is small or large. Because of this Newtonian
behaviour at small and large De, kc decreases as M increases at low M for small and
large De. For intermediate De, where viscoelastic effects are present, kc increases as
M increases at low M , again due to the elasticity-induced instability that operates in
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Situation Ãc kc

η =0, M = 0 infinite infinite
η =0, M �= 0, Pe =0 infinite infinite

η =0, 0 < M < ∞, Pe �= 0 finite finite
η = 0, M → ∞ infinite zero

η �= 0, M =0, De = 0 or De → ∞ infinite infinite
η �= 0, M =0, 0 < De < ∞ finite finite
η �= 0, M �= 0, 0 < De < ∞ finite finite

η �= 0, 0 < M < ∞, Pe �= 0, De = 0 or De → ∞ finite finite
η �= 0, M �= 0, Pe =0, De =0 or De → ∞ infinite infinite

Table 1. Stability behaviour in the creeping-flow limit.

this regime. The behaviour of Ãc with respect to M for De �= 0 is non-monotonic,
similar to the Newtonian case. In all of the cases shown, the surface waves respond
harmonically to the gravity modulation. Table 1 presents a summary of Ãc and kc for
a number of limiting cases in the creeping-flow limit.

The effects of the mean gravity and surface tension on Ãc and kc for viscoelastic
liquids are the same as those for Newtonian liquids. At higher M , the effect of Pe also
remains unaltered by viscoelasticity. However, at low M , due to the presence of the
elasticity-induced instability, decreasing Pe results in a decrease of kc and an increase
of Ãc. Note that when Pe = 0, viscoelastic liquids can be unstable when inertia is
absent, whereas Newtonian liquids cannot be.

7. Conclusions
We have explored an instability that is induced by surfactants when the free

surface of a liquid is vertically vibrated and inertial effects are absent. The long-
wavelength instability discovered by Kumar & Matar (2002) is found to persist even
at finite wavelengths. Their long-wavelength theory can be recovered from the finite-
wavelength theory developed here, and yields predictions that are in qualitative (and
in some cases quantitative) agreement with the finite-wavelength theory. Instability
requires the Marangoni flows to be sufficiently strong and in the appropriate phase
with respect to the gravity modulation. In addition, we find that in viscoelastic liquids,
instability can arise even in the absence of surfactants and inertia since the liquid
elasticity gives rise to an effective inertia.

The present work answers several open questions from prior work and provides
another example of how surfactants can destabilize a flow that is completely stable in
their absence. It also presents a rather simple example of a purely elastic interfacial
instability, given that elasticity can create instability in cases that would otherwise
be stable in the inertialess Newtonian limit. Additional work should focus on the
nonlinear regime of the instability, including pattern formation, as well as on
Marangoni flows induced by temperature gradients (Birikh et al. 2001; Kumar,
Bandyopadhyay & Mondal 2004; Mondal & Kumar 2006). Finally, we note that in
addition to being of fundamental interest, Faraday waves have potential practical
applications. Wright & Saylor (2003) have used Faraday waves in particle-laden thin
liquid films to create patterned particulate deposits on a solid substrate. Takagi,
Krinsky & Pumir (2002) have shown how Faraday waves can be used to influence
the patterns that form in endothelial cell cultures. To the extent that each of these
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applications potentially involves Marangoni and viscoelastic effects, the results of this
study may be useful in designing Faraday waves to achieve a desired outcome.
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